Mark scheme

Question	Answer/Indicative content	Marks	Guidance
1 a	1 mark per bullet to max 4: • The contents of the Program Counter/PC are copied/sent to the Memory Address Register/ MAR • The address is sent/transferred along the address bus • The control unit sends/transfers a (read) signal along the control bus • Contents stored in the memory address are sent/transferred along the data bus • Contents (from memory) are stored in the Memory Data Register/MDR •and sent/copied to the Current Instruction Register/CIR • The Program Counter/PC is incremented	4	Accept IR/Instruction Register for CIR/Current instruction Register Accept MBR/Memory Buffer Register for MDR/Memory Data Register Examiner's Comments Candidates who had good knowledge of the FDE cycle were able to gain 3 or 4 marks on this question. Some candidates did not have a good understanding of what a register or a bus is and tended to say they did something other than transport or temporarily store. Many however gave clear and correct responses. Misconception Some candidates gave responses which mentioned a register fetching the data or passing data. A register is a temporary store for data/instructions/addresses and as such doesn't fetch or pass anything. Exemplar 1 The PC hodget fine fine concerns bounded to the substance of the substance for the substance of
b	Program Counter / PC	1	Examiner's Comments Candidates who understood the FDE

				cycle gained the mark. Those that did not tended to mention a register used in the fetch or decode stages.
	С	Allows the next instruction to be fetched whilst the previous one is being decoded/executed /allows the overlapping of different parts of the FDE It increases throughput / increases the number of instructions processed in a set period of time It prevents the CPU having to wait / prevents idle components	3	DNA responses that talk about the FDE running faster. Allow a diagram demonstrating pipelining for MP1. Allow 'it will take less time to do the same amount of instructions' for MP2 BOD 'processes' for 'instructions' for MP2. DNA 'more efficient' on its own for MP2 DNA points if clearly discussing multiple cores. Examiner's Comments Many candidates were able to gain a mark for an instruction being fetched at the same time as another is decoded. Some candidates discussed multiple cores which were mentioned in the question stem but did not apply to this question. Candidates should have access to previous mark schemes.
		Total	8	
		1 Mark for each labelled component.		Accept MBR / Memory Buffer Register for D Examiner's Comments
		A Data Bus		
2		B MAR / Memory Address Register	AO1.1 (5)	This question was generally answered well. Most candidates were
		C PC / Program Counter	(5)	able to identify the data bus, Memory Address Register (MAR) and Memory
		D MDR / Memory Data Register		Data Register (MDR), although some candidates were not able to identify
		E ACC / Accumulator		the Program Counter (PC) and/or the Accumulator (ACC).
		Total	5	
3		Mark Band 3- High Level (7-9 marks) The candidate demonstrates a thorough knowledge and understanding of both Von Neumann	AO1.1 (2) AO1.2 (2) AO2.1	AO1 Harvard Architecture: • Uses separate memory for data and instructions.

and Harvard architectures.

All detail is generally accurate and relevant.

The candidate is able to apply their knowledge and understanding directly and consistently to the context provided.

Evidence/examples will be explicitly relevant to the explanation.

The candidate will come to a clear conclusion that must be justified by their comments.

There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.

Mark Band 2- Mid Level (4-6 marks)

The candidate demonstrates reasonable knowledge and understanding of Von Neumann and Harvard architectures; the material is generally accurate but at times underdeveloped. The candidate may not have applied both to this scenario. The candidate is able to apply their knowledge and understanding directly to the context provided although one or two opportunities are missed. Evidence/examples are for the most part implicitly relevant to the explanation.

The candidate will attempt to come to a conclusion, although it may not be fully justified by their answer.

There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence.

Mark Band 1- Low Level (1-3 marks)

The candidate demonstrates a basic knowledge of Von Neumann and Harvard architectures. The material is basic and contains some inaccuracies.

The candidate makes a limited attempt to apply acquired knowledge and understanding to the context provided.

(2) AO3.3 (3)

- Uses separate data and address buses for each piece of memory
- Can read/write data and instructions simultaneously

Von Neumann Architecture:

- Uses one physical piece of memory for both data and instructions
- Uses one data and one address bus.
- Can only read/write data or instructions, not both at the same time

AO2

- Von Neumann design is less complex. Development of one is cheaper. Harvard design is more complex as it requires two buses. Development is more expensive. More CPU pins are required; a complex motherboard is required with doubling of memory.
- Harvard Architecture free data memory cannot be used for instructions and vice-versa

AO3

- Harvard architecture allows for faster processing as instructions and data are simultaneously fetched/executed.
- Harvard splits memory between instruction and data in a static way, meaning you could run out of one memory with unused memory in the other area.
- Von Neumann architecture allows for dynamic allocation between instruction and data

The candidate provides nothing more than an unsupported assertion.

The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear.

0 mark

No attempt to answer the question or response is not worthy of credit.

 Large programs with small data (Computer games) or small programs with large data (video editing) can be equally catered for

Examiner's Comments

Candidates were assessed on the quality of their extended response in this question. Most of the candidates were clear on the basic difference between Harvard and Von Neumann architecture, but many did not discuss this in detail or did not use the correct terminology. Some candidates confused the different architectures and contradicted points in their discussion.

Exemplar 1

Vo Newman and Howard story data in dispersal ways, they both hos separate memory and addess sure hower thousand has separate memory location; see data and instruction while was held von Neumann boat and both in the James memory is an apport way a few manning is joint, data and instructions can spit mammany in an apport ways securing softments are not being all like it can happen in thousand authierture. Also, we then the Host programs are written to report a Von Neumann architecture there are spit grown developers. Bother for multipurpose system.

Horvard is less complex and memory many programs as it can want trun faster if contains written specifically. Very good contains written specifically. Very good in thousand in more written sure specifically were good your while Von Neumann is more written sure and letter for good and purpose competers. He was a contacted systems in manie systems and letter for good grand purpose competers. He was a contacted systems, or machine about to rect read a general purpose contains about to rect read a general purpose contains.

This candidate response was given 5 marks. There are some valid points about both Von Neumann and Harvard Architecture, but the points made are not fully developed with limited application. This response was therefore given a mark within the midlevel band.

		Total	9	Questions with the command word 'discuss' require candidates to give a balanced discussion and provided a suitable conclusion which justifies their comments. Opportunities to practise these questions will support candidates to do better on these style questions.
4		 Clock Speed The speed at which the fetch decode execute cycle is completed/ the speed a single core can execute instructions Number of cores/ independent processing units that can fetch decode execute at the same time Cache size memory that contains recently/frequently used instructions/data memory that has a faster R/W speed than RAM memory that is closer to/onboard the CPU 	AO1.1 (2) AO1.2 (2)	One mark for stating the factor, mark for expanding the factor - Accept cycles for "FDE Cycles" Examiner's Comments Most candidates were able to identify two factors that could affect the performance of the CPU, but many were not given all 4 marks as they did not fully describe why each factor would affect the performance. See Exemplar 1, which was given full marks. Exemplar 1 - Clock speed, the number of clock cycles that cours for second to theirs. The higher the clock speed the more data instactions received within a given time fame, increasing performance. The number of cores, the more DDE cycles can be conducted simultaneously, so, more data instructions are executed at not point increasing. Performance. The candidate gives two valid factors that would affect performance and then explains why each of the two factors would affect performance. They use appropriate terminology in their response.
		Total	4	
5	а	 Higher/faster clock speed More cores/dual/quad/etc core More cache memory. 	2	Answers must refer to an improvement (more/higher/faster) not just "change the clock speed" Allow discussions of level 1/level 2 cache

 		1	
			sizes for one mark.
			Accept valid features of CPUs that would improve performance e.g. Use of: Pipelining Simultaneous Multithreading Do not accept RISC/CISC.
			Examiner's Comments Most candidates were able to gain full marks on this question. Less successful responses often mentioned clock speed, cache or cores without referring to an improvement, e.g. higher or faster.
b i	 Holds all input/output Holds results of calculations (from the ALU) Checked for conditional branching (e.g. BRZ) Stores data which has come from the MDR/RAM 	2	Examiner's Comments Most candidates were able to access 1 mark for the result of ALU calculations, but few were able to give two uses. Some confused the accumulator with the program counter and the ALU.
ii	 Holds the <u>address/location</u> of the <u>next</u> instruction (to be executed/fetched) Contents copied to the MAR at start of FDE Incremented (by one) on every cycle Can be changed by branch/jump instructions 	2	Examiner's Comments This question was generally well answered by candidates who gave clear responses. Misconception Some candidates thought that the program counter kept track of a count of the number of instructions that had been fetched.
ii	Memory Address Register / MAR Memory Data Register / MDR Current Instruction Register / CIR Index Register / IR	3	Allow Memory Buffer Register for MDR Examiner's Comments Most candidates gained full marks on this question and were able to correctly identify three other registers. Some lost marks for saying the ALU or control unit were registers.
c i	Both data and instructions share the same memory	2	Examiner's Comments

		 Instructions and Data stored in same format A single set of buses / same bus for instructions & data (to connect CPU to Memory and I/O) Has a (single) control unit Has an ALU. Has ways to input and output. Has access to storage, Works sequentially through instructions / follows Fetch-execute cycle (Special) registers within CPU Based on stored program concept 		Many candidates were able to access full marks on this question. This question has been asked in previous papers and candidates should be encouraged to use these to make sure they are clear in their responses. There were many possible responses in the mark scheme to help candidates to gain full marks. Most candidates gained at least 1 mark.
	ii	 Separate memory for data and instructions / Multiple memory units Different (sets of) buses one for instructions & one for data/instructions and data can be accessed concurrently. 	1	Examiner's Comments This question was generally answered well by candidates and the majority gave separate areas of memory for data and instructions. Where candidates were not given marks, it was generally because their answer was unclear, e.g. just saying 'separate memory'.
		Total	12	
6		mark for any of the following bullet points, e.g: Computers use binary logic for on/off or 1/0 Computer systems are based on switches/transistors Binary is high tolerance	1 (AO1.2) (1)	Examiner's Comments This question was generally answered well.
		Total	1	
7	i	 1 mark per bullet up to a maximum of 2 marks, e.g: Uses separate memory blocks for instructions and data Has separate buses (data and address) for data and instructions Has fixed memory sizes for 	2 (AO1.1) (1) (AO1.2) (1)	Accept unit instead of blocks (BP1) Examiner's Comments Some candidates were vague in their response and were not clear that Harvard has separate memory blocks. Candidates must be specific in their response.

			Instruction memory may be ROM		
		ii	 1 mark per bullet up to a maximum of 2 marks, e.g: Fixed instruction size No need for memory to be shared between data and instructions Removes need for secondary storage Instructions would never be changed 	2 (AO2.1) (2) Any 2 (Max 2)	Examiner's Comments This question was not answered well. Many candidates repeated their response to the previous question and did not answer the question correctly. Candidates need to read questions carefully.
			Total	4	
8		i	 Temporary storage/memory location inside the CPU Used for a single specific purpose Faster access speed than RAM / secondary storage 	2 AO1.1	
		ii	 Accumulator checked to see if value held is positive or zero If so, BRANCH carried out / jumps to specified location. 	2 AO1.2	
			Total	4	
9	а		 Concurrent processing of multiple instructions One instruction can be fetched while previous isbeing decoded And the one before is being executed. In case of a branch pipeline is flushed. Increases speed of execution 	4 3 AO1.1	
9	a	i	 Concurrent processing of multiple instructions One instruction can be fetched while previous isbeing decoded And the one before is being executed. In case of a branch pipeline is flushed. 	-	Accept Use of pipelining/size of pipeline Use of out of order execution Use of SIMD instructions Integrated graphics processing on CPU

		iii	Used for storing programs/data/parts of OS currently in use ROM is non volatile Used for storing (e.g.) BIOS / bootstrap Performing complex numerical calculations Calculations on matrices / vectors / multiple data atthe same timee.g. insurance pricing, modelling risk, calculating bills	2 AO2.2	Example has to relate to insurance company
			Total	11	
10	а		1 mark for each interval Interval 1 • A is fetched Interval 2 • A is decoded • B is fetched Interval 3 • A is executed • B is decoded • C is fetched Interval 4 • B is executed • C is decoded • C is decoded • D is fetched	4AO1.2 (4)	
	b		mark per bullet up to a maximum of 2 marks: Reduces/removes latency CPU is not idle while waiting for next instruction Next instruction is fetched while current one is decoded/executed	2AO1.2 (2)	

			All parts of the processor can be used at any instance in time.		
			Total	6	
11	а		 Store value in accumulator at address given BRA / BR Branch if zero Branch if zero or positive HLT / COB / END 	5 AO1.1	Mnemonic Instruction ADD Add SUB Subtract Store value in accumulator at address given LDA Load (to accumulator) BRA Branch always BRZ Branch if zero BRP Branch if zero or positive INP Input OUT Output HLT End program
	b		 Inputs two numbers stores at least one of them Comparison / subtraction to decide which is larger Jump / output if num1 larger Jump / output if num2 larger or nums equal Loops back to start after either output 	6 AO3.2	Example answer start INP STA x INP STA y SUB x BRP first LDA x OUT BRA start first LDA y OUT BRA start first LDA y OUT DAT DAT
			Total	11	
12	а		 1 mark per bullet up to a maximum of 2 marks, e.g. Uses the same memory for data and instructions Uses the same bus for data and instructions Can only fetch either data or instructions at one time/follows FDE 	2 AO1.1 (1) AO2.1 (1)	 ALU for arithmetic Logic Unit CPU contains an Arithmetic Logic Unit CPU contains a single Control Unit. Same (Memory) location is not acceptable for BP1
•	b	i	mark per bullet up to a maximum of 4 marks, e.g.: Data/address is copied from PC to MAR	4 AO1.1 (2) AO2.1 (2)	The bullets must be in the correct order, except BP2, which can come anywhere from BP2 onwards

	 PC is incremented (by 1) (this can be in any location from here down) Data in MAR is passed onto the Address Bus Read signal is sent onto the control bus RAM copies the data from the location specified by the address bus onto the data bus Data on the data bus is passed into the MDR Data is copied from the MDR to the CIR 		
ii	• C	1 AO1.2 (1)	
	Total	7	